Entrainment of Prefrontal Beta Oscillations Induces an Endogenous Echo and Impairs Memory Formation

نویسندگان

  • Simon Hanslmayr
  • Jonas Matuschek
  • Marie-Christin Fellner
چکیده

Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks

Early life exposure to stressful situations impairs cognitive performance of adults and contributes to the etiology of several psychiatric disorders. Most of affected cognitive abilities rely on coupling by synchrony within complex neuronal networks, including prefrontal cortex (PFC), hippocampus (HP), and perirhinal cortex (PRH). Yet it remains poorly understood how early life stress (ELS) ind...

متن کامل

Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia

Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ...

متن کامل

The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG-fMRI study.

Previous studies demonstrated that increases in the theta frequency band with concomitant decreases in the alpha/beta frequency band indicate successful memory formation. However, little is known about the brain regions and the cognitive processes that underlie these encoding-related oscillatory memory effects. We investigated this relationship using simultaneous EEG-fMRI recordings in humans d...

متن کامل

Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation

Among the rhythms of the brain, oscillations in the beta frequency range (∼13-30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulatin...

متن کامل

What is the Functional Relevance of Prefrontal Cortex Entrainment to Hippocampal Theta Rhythms?

There has been considerable interest in the importance of oscillations in the brain and in how these oscillations relate to the firing of single neurons. Recently a number of studies have shown that the spiking of individual neurons in the medial prefrontal cortex (mPFC) become entrained to the hippocampal (HPC) theta rhythm. We recently showed that theta-entrained mPFC cells lost theta-entrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014